Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Hendrik G. Kruger, Melanie Rademeyer* and Reshika Ramdhani

School of Chemistry, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa

Correspondence e-mail:
rademeyerm@ukzn.ac.za

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.062$
$w R$ factor $=0.172$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Pentacyclo[5.4.0.0 $0^{2,6} \cdot 0^{3,10} .0^{5,9}$]undecane-8,11-dione ethylene acetal

The title molecule, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$, is a chiral molecule which exhibits $\mathrm{C}-\mathrm{C}$ single-bond lengths that deviate from the expected value. Both enantiomers are present in the crystal structure.

Comment

The structure of the title compound, (I), was determined as part of an ongoing investigation of the chemical reactivity and crystal structures of polycyclic pentacycloundecane (PCU) cage derivatives. Previous studies indicated that PCU cages and derivatives often display $\mathrm{C}-\mathrm{C}$ bond lengths that deviate from the expected value of $1.54 \AA$ (Flippen-Anderson et al., 1991; Linden et al., 2005; Kruger et al., 2005). It is typically found that bonds involving atoms $\mathrm{C} 4, \mathrm{C} 8$ and C 11 are shorter than normal, and that the $\mathrm{C} 9-\mathrm{C} 10$ bond is longer than expected.

(I)

The title compound is unsymmetrically substituted at the mouth of the cage, with a ketone substituent at atom C 8 and a ketal substituent at atom C11 (Fig. 1). The asymmetric unit consists of one chiral molecule, with eight molecules (four of each enantiomer) in the unit cell (Fig. 2). This compound exhibits the shortening and elongation of certain $\mathrm{C}-\mathrm{C}$ single bonds, as reported for related PCU derivatives (Table 1). The longest $\mathrm{C}-\mathrm{C}$ single bond is the $\mathrm{C} 9-\mathrm{C} 10$ bond $[1.581$ (3) \AA], with the $\mathrm{C} 3-\mathrm{C} 10, \mathrm{C} 6-\mathrm{C} 7, \mathrm{C} 5-\mathrm{C} 9, \mathrm{C} 2-\mathrm{C} 6, \mathrm{C} 5-\mathrm{C} 6$ and $\mathrm{C} 1-\mathrm{C} 7$ bonds also exceeding the expected value of $1.54 \AA$. The bonds involving the bridgehead atom C 4 are shorter than expected; $\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 4-\mathrm{C} 5$ exhibit values of 1.525 (3) and 1.521 (3) \AA, respectively. The shortest bond is the C7-C8 bond $[1.509$ (3) \AA], with the $\mathrm{C} 10-\mathrm{C} 11, \mathrm{C} 8-\mathrm{C} 9$ and $\mathrm{C} 12-$ C 13 bonds also exhibiting short $\mathrm{C}-\mathrm{C}$ single-bond lengths. The unsymmetrical substitution at the mouth of the cage results in corresponding bonds in the molecule displaying different bond lengths, for example, the $\mathrm{C} 1-\mathrm{C} 11$ bond $[1.536$ (3) \AA] is longer than the corresponding $\mathrm{C} 7-\mathrm{C} 8$ bond.

The five-membered rings, C2-C6 and C3-C5/C9/C10, are each in an envelope conformation (flap ato C 4), and the acetal ring, $\mathrm{O} 1 / \mathrm{C} 11 / \mathrm{O} 2 / \mathrm{C} 13 / \mathrm{C} 12$, also adopts an envelope confor-

Received 23 November 2005 Accepted 13 December 2005 Online 16 December 2005
mation (flap atom C 1). The rings, $\mathrm{C} 1-\mathrm{C} 3 / \mathrm{C} 10 / \mathrm{C} 11$ and $\mathrm{C} 5-\mathrm{C} 9$, are twisted on $\mathrm{C} 10-\mathrm{C} 11$ and $\mathrm{C} 8-\mathrm{C} 9$, respectively.

Experimental

The synthetic procedure reported by Dekker \& Oliver (1979) was followed to prepare the title compound, (I). In this procedure, a mixture of pentacycloundecanedione (Cookson et al., 1964) (183 g, 1.05 mol), ethylene glycol ($81.2 \mathrm{ml}, 1.45 \mathrm{~mol}$) and p-toluenesulfonic acid $\left(6.11 \mathrm{~g}, 3.21 \times 10^{-2} \mathrm{~mol}\right)$ in benzene $(600 \mathrm{ml})$ was refluxed (Dean-Stark trap) with stirring for 4 d . The reaction mixture was cooled to room temperature and slowly poured into ice-cold 10% (v / v) aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1000 \mathrm{ml})$, extracted with dichloromethane (3 $\times 500 \mathrm{ml}$) and the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent followed by recrystallization of the crude residue yielded the monoacetal as colourless crystals ($170.04 \mathrm{~g}, 74 \%$). IR (KBr) max $1747 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 1.51-1.84$ (2 H , methylene bridge protons), 2.35-2.92 (8 H , methine protons), $3.78-3.91\left(4 \mathrm{H}\right.$, ketal protons) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 36.35(d), 38.74(t), 41.33-53.02(d), 64.52-65.71$ (t, ketal carbons), $113.92(s), 215.14$ (s). The MS spectrum was identical to that of an authentic sample.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \\
& M_{r}=218.24 \\
& \text { Monoclinic, } \mathrm{C} 2 / \mathrm{c} \\
& a=24.7387(10) \AA \\
& b=6.6340(3) \AA \\
& c=12.7631(5) \AA \\
& \beta=10.914(2)^{\circ} \\
& V=1993.09(14) \AA^{3} \\
& Z=8
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.455 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{Ka} \mathrm{radiation}^{\text {Cell parameters from } 3784} \\
& \text { reflections. } \\
& \theta=3.2-28.2^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.37 \times 0.22 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
10114 measured reflections
2394 independent reflections
1984 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-32 \rightarrow 32$
$k=-8 \rightarrow 8$
$l=-16 \rightarrow 11$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.172$
$S=1.06$
2394 reflections
145 parameters
H-atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0769 P)^{2}\right. \\
+5.0276 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \AA^{-2} \\
\Delta \rho_{\max }=0.58 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected bond lengths (\AA).

C11-C10	$1.510(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.560(3)$
C11-C1	$1.536(3)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.514(3)$
$\mathrm{C} 10-\mathrm{C} 3$	$1.556(3)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.509(3)$
C10-C 9	$1.581(3)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.557(3)$
C3-C4	$1.525(3)$	$\mathrm{C} 7-\mathrm{C} 1$	$1.569(3)$
C3-C2	$1.537(3)$	$\mathrm{C} 6-\mathrm{C} 2$	$1.558(3)$
C4-C5	$1.521(3)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.550(3)$
C5-C 9	$1.557(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.524(3)$

All H atoms were placed in calculated positions, with methylene $\mathrm{C}-\mathrm{H}$ distances of 0.99 A and methine $\mathrm{C}-\mathrm{H}$ distances of $1.00 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level (ORTEP3; Farrugia, 1997).

Figure 2
Packing diagram (MERCURY; Bruno et al., 2002) of (I), viewed along the b axis.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

We thank the Jan Boeyens Structural Chemistry Laboratory of the University of the Witwatersrand, South Africa, for the structure determination.

References

Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

organic papers

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.

Cookson, R. C., Crundwell, E., Hill, R. R. \& Hudec, J. (1964). J. Chem. Soc. pp. 3062-3075
Dekker, T. G. \& Oliver, D. W. (1979). S. Afr. J. Chem. 32, 45-48.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flippen-Anderson, J. L., George, C., Gilardi, R., Zajac, W. W., Walters, T. R., Marchand, A., Dave, P. R. \& Arney, B. E. (1991). Acta Cryst. C47, 813-817.
Kruger, H. G., Rademeyer, M. \& Ramdhani, R. (2005). Acta Cryst. E61, o3968-o3970.
Linden, A., Romanski, J., Mloston, G. \& Heimgartner, H. (2005). Acta Cryst. C61, o221-o226.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

